Additional Comments on Holographic Superconductor (with Momentum Relaxation¹)

In collaboration with Keun-Young Kim and Kyung Kiu Kim (GIST)

Miok Park

Korea Institute of Advanced Study(KIAS), Seoul, S. Korea

Jan. 29, 2015, "Joint Winter Conference on Particle Physics, String and Cosmology" at YongPyong-High1

¹arXiv:1501.00446

What is Superconductor?

- 1. Superconductivity was discovered in 1911 in an attempt to understand how the resistivity of a metal behaves at low temperature.
 - Zero Electrical Resistivity below a critical temperature
 - Missner effect : a magnetic field is expelled when $T < T_c$
- 2. Landau-Ginzburg theory : describes superconductivity in terms of a second order phase transition whose order parameter is a complex scalar field φ

$$\frac{dF}{d\varphi^*} = \alpha (T - T_c)\varphi + \beta |\varphi|^2 \varphi + \cdots$$

where α and β are positive constants

- $T > T_c$: the min. of the free energy is at $\varphi = 0$
- ► $T < T_c$: the min. of the free energy is at nonzero value of φ
- 3. BCS theory
 - Cooper pairs by electron-phonon interaction
 - Pairing state is singlet and s-wave
 - Cooper pair and BEC \Rightarrow (universal) energy gap, Δ

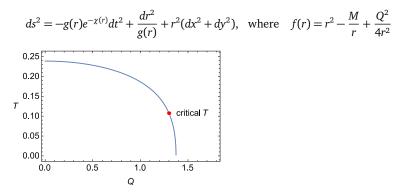
Why Holographic Superconductor?

Unconventional Superconductor

- 1. Cuprates($T_c = 164K$) were discovered in 1986 (The highest known T_c is 23*K* for conventional superconductor)
- 2. Pnitides was found in an iron arsenide compound in 2008, and superconductivity was seen up to 56*K*
- 3. Electron pairing state is singlet and *d*-wave
- 4. The lattice should not be ignored (strongly correlated)
- 5. Anisotropy of energy gap in momentum space
- ► There is no known mechanism for high temperature superconductor.
- Can we find a phenomenological model first such as Landau-Ginzberg model for high temperature superconductor?
- Let us try this with another view point, which is using gravity, holographic correspondence conjecture.

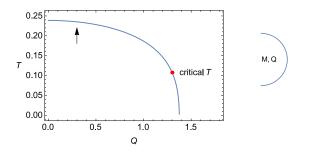
イロト イポト イヨト イヨト

Holographic Superconductor by HHH

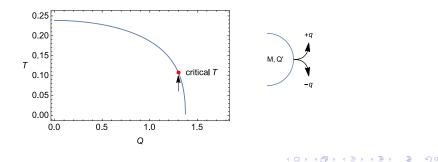

$$S = \int d^{4}x \sqrt{-g} \left(R - 2\Lambda - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - |\nabla_{\mu}\psi - iqA_{\mu}\psi|^{2} - m^{2}\psi^{2} \right)$$
(1)

where q is charge of scalar field.

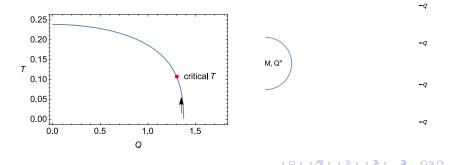
Holographic Correspondence (AdS/CMT)


- 1. RN-AdS black hole in gravity \Leftrightarrow normal states in CMT
- 2. RN-Hairy black hole in gravity \Leftrightarrow superconducting phase in CMT
- 3. critical temperature, T_c , which phase transition occur
- 4. Scalar field Condensation, $\langle \mathcal{O} \rangle$
- 5. Energy gap, Δ . The gap in the spectrum results in a gap in the optical conductivity, i.e. the conductivity as a function of frequency, $\Delta = 2\omega_g$

: Basic Mechanism for forming Hairy Black Hole from RN-AdS black hole suggested by Gary Horowitz


: Basic Mechanism for forming Hairy Black Hole from RN-AdS black hole suggested by Gary Horowitz

$$ds^{2} = -g(r)e^{-\chi(r)}dt^{2} + \frac{dr^{2}}{g(r)} + r^{2}(dx^{2} + dy^{2}), \text{ where } f(r) = r^{2} - \frac{M}{r} + \frac{Q^{2}}{4r^{2}}$$


: Basic Mechanism for forming Hairy Black Hole from RN-AdS black hole suggested by Gary Horowitz

$$ds^{2} = -g(r)e^{-\chi(r)}dt^{2} + \frac{dr^{2}}{g(r)} + r^{2}(dx^{2} + dy^{2}), \text{ where } f(r) = r^{2} - \frac{M}{r} + \frac{Q^{2}}{4r^{2}}$$

: Basic Mechanism for forming Hairy Black Hole from RN-AdS black hole suggested by Gary Horowitz

$$ds^{2} = -g(r)e^{-\chi(r)}dt^{2} + \frac{dr^{2}}{g(r)} + r^{2}(dx^{2} + dy^{2}), \text{ where } f(r) = r^{2} - \frac{M}{r} + \frac{Q^{2}}{4r^{2}}$$

Miok Park HS

BF bound

For RN-AdS black hole, the effective mass of ψ is

$$m_{eff}^2 = m^2 + q^2 g^{tt} A_t^2$$

- ▶ m_{eff}^2 can be sufficiently negative near the horizon to destabilize the scalar field \rightarrow The origin of the instability responsible for the scalar hair is the coupling of the charged scalar to the charge of the black hole.
- ► AdS_{d+1} spacetime is stable even with scalar fields with $m^2 < 0$ provided $m^2 > m_{BF}^2$ with $m_{BF}^2 = -\frac{d^2}{4L^2}$, (We consider the case $m^2 = -\frac{2}{L^2}$)

Would the instability turn off as $q \rightarrow 0$?

- A nearly extremal RN-AdS black hole remains unstable to forming neutral scalar hair, provided that m^2 is close to the BF bound
- ▶ near horizon geometry of an extremal RN-AdS black hole is $AdS_2 \times R^2$
- ► If m²_{BF,AdS₄} < m² < m²_{BF,AdS₂}, it is unstable at near horizon, but stable asymptotic AdS₄
- This process is not associated with superconductivity since it does not break U(1) symmetry

Qausi-normal Mode

- The Chebyshev grid and Chebyshev differential matrix are used ►
- Temperature of RN-AdS black hole is calculated by

$$T = \frac{12L^2 - Q^2 z_+^4}{16L^2 \pi z_+} \tag{2}$$

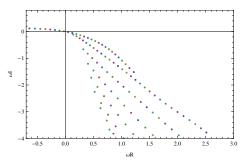


Figure: *Q* changes from 0.01 to 3 with increment of 0.1.

Free energy comparison

Grand potential is

$$F = \epsilon - Ts - \mu \rho$$

where ϵ is energy density, ρ is charge density, and s is entropy density.

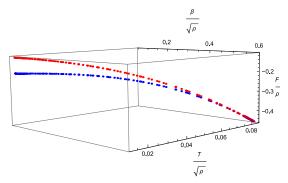


Figure: Red is for RN-AdS black hole and Blue is for hairy black hole when ρ is fixed.

< □ > < □ > < □ > < □ >

Setup for Momentum Relaxation

$$\begin{split} S &= \int_{M} d^{d+1}x \sqrt{-g} \Biggl[R + \frac{d(d-1)}{L^2} - \frac{1}{4}F^2 - |D\Phi|^2 - m^2 |\Phi|^2 - \frac{1}{2}\sum_{I=1}^{d-1} (\partial \psi_I)^2 \Biggr] \\ ds^2 &= -g(r)e^{-\chi(r)}dt^2 + \frac{dr^2}{g(r)} + \frac{r^2}{L^2}(dx^2 + dy^2) , \\ A &= A_t(r)dt , \qquad \Phi = \Phi(r) , \qquad \psi_I = \beta_{Ii}x^i = \frac{\beta}{L^2}\delta_{Ii}x^i , \end{split}$$

イロト イヨト イヨト イヨト

크

Condensation

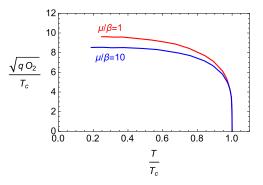
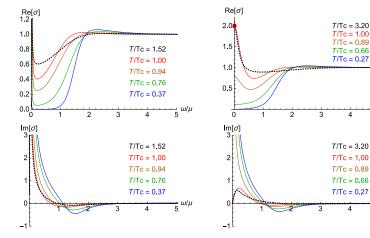
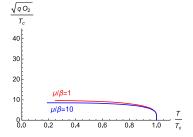



Figure: condensation for $\mu/\beta = 1$ for Red and $\mu/\beta = 10$ for Blue with $\Delta = 2$ and q = 3

イロト イポト イヨト イヨト

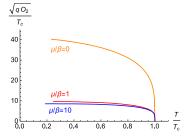
Conductivity



 ω/μ

 $\frac{-\omega}{5} \omega \mu$

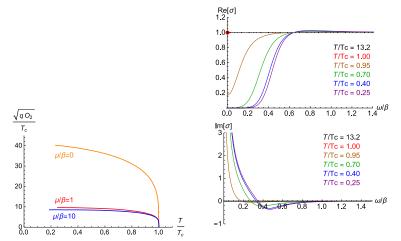
5


New Mechanism for Holographic Superconductor

イロト イポト イヨト イヨト

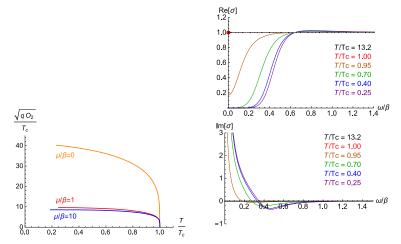
æ

New Mechanism for Holographic Superconductor



イロト イポト イヨト イヨト

æ


Holographic Superconductor with Momentum Relaxation

New Mechanism for Holographic Superconductor

イロト イポト イヨト イヨト

New Mechanism for Holographic Superconductor

But physical mechanism is not understood yet!

<ロト < 部ト < 目 >

< Ξ